These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Correcting kernel tilting and hardening in convolution/superposition dose calculations for clinical divergent and polychromatic photon beams.
    Author: Liu HH, Mackie TR, McCullough EC.
    Journal: Med Phys; 1997 Nov; 24(11):1729-41. PubMed ID: 9394280.
    Abstract:
    To account for clinical divergent and polychromatic photon beams, we have developed kernel tilting and kernel hardening correction methods for convolution dose calculation algorithms. The new correction methods were validated by Monte Carlo simulation. The accuracy and computation time of the our kernel tilting and kernel hardening correction methods were also compared to the existing approaches including terma divergence correction, dose divergence correction methods, and the effective mean kernel method with no kernel hardening correction. Treatment fields of 10 x 10-40 x 40 cm2 (field size at source to axis distance (SAD)) with source to source distances (SSDs) of 60, 80, and 100 cm, and photon energies of 6, 10, and 18 MV have been studied. Our results showed that based on the relative dose errors at a depth of 15 cm along the central axis, the terma divergence correction may be used for fields smaller than 10 x 10 cm2 with a SSD larger than 80 cm; the dose divergence correction with an additional kernel hardening correction can reduce dose error and may be more applicable than the terma divergence correction. For both these methods, the dose error increased linearly with the depth in the phantom; the 90% isodose lines at the depth of 15 cm were shifted by about 2%-5% of the field width due to significant underestimation of the penumbra dose. The kernel hardening effect was less prominent than the kernel tilting effect for clinical photon beams. The dose error by using nonhardening corrected kernel is less than 2.0% at a depth of 15 cm along the central axis, yet it increased with a smaller field size and lower photon energy. The kernel hardening correction could be more important to compute dose in the fields with beam modifiers such as wedges when beam hardening is more significant. The kernel tilting correction and kernel hardening correction increased computation time by about 3 times, and 0.5-1 times, respectively. This can be justified by more accurate dose calculations for the majority of clinical treatments.
    [Abstract] [Full Text] [Related] [New Search]