These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of brain ischemia and reperfusion on the localization of phosphorylated eukaryotic initiation factor 2 alpha. Author: DeGracia DJ, Sullivan JM, Neumar RW, Alousi SS, Hikade KR, Pittman JE, White BC, Rafols JA, Krause GS. Journal: J Cereb Blood Flow Metab; 1997 Dec; 17(12):1291-302. PubMed ID: 9397028. Abstract: Postischemic brain reperfusion is associated with a substantial and long-lasting reduction of protein synthesis in selectively vulnerable neurons. Because the overall translation initiation rate is typically regulated by altering the phosphorylation of serine 51 on the alpha-subunit of eukaryotic initiation factor 2 (eIF-2 alpha), we used an antibody specific to phosphorylated eIF-2 alpha [eIF-2(alpha P)] to study the regional and cellular distribution of eIF-2(alpha P) in normal, ischemic, and reperfused rat brains. Western blots of brain postmitochondrial supernatants revealed that approximately 1% of all eIF-2 alpha is phosphorylated in controls, eIF-2(alpha P) is not reduced by up to 30 minutes of ischemia, and eIF-2(alpha P) is increased approximately 20-fold after 10 and 90 minutes of reperfusion. Immunohistochemistry shows localization of eIF-2(alpha P) to astrocytes in normal brains, a massive increase in eIF-2(alpha P) in the cytoplasm of neurons within the first 10 minutes of reperfusion, accumulation of eIF-2(alpha P) in the nuclei of selectively vulnerable neurons after 1 hour of reperfusion, and morphology suggesting pyknosis or apoptosis in neuronal nuclei that continue to display eIF-2(alpha P) after 4 hours of reperfusion. These observations, together with the fact that eIF-2(alpha P) inhibits translation initiation, make a compelling case that eIF-2(alpha P) is responsible for reperfusion-induced inhibition of protein synthesis in vulnerable neurons.[Abstract] [Full Text] [Related] [New Search]