These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Replication of kinetoplast DNA of Crithidia acanthocephali. I. Density shift experiments using deuterium oxide.
    Author: Manning JE, Wolstenholme DR.
    Journal: J Cell Biol; 1976 Aug; 70(2 pt 1):406-18. PubMed ID: 939783.
    Abstract:
    The protozoan Crithidia acanthocephali contains, within a modified region of a mitochondrion, a mass of DNA known as kinetoplast DNA (kDNA). This DNA consists mainly of an association of approximately 27,000 covalently closed 0.8-mum circular molecules which are apparently held together in a definite ordered manner by topological interlocking. After culturing of C. acanthocephali cells for 25 generations in medium containing 75% deuterium oxide, both nuclear DNA (rhonative, nondeuterated=1.717 g/cm3) and kDNA (rhonative, nondeuterated=1.702 g/cm3) increased in buoyant density by 0.012 g/cm3. The replication of the two DNAs was studied by cesium chloride buoyant density analysis of DNAs from exponentially growing cells taken at 1.0, 1.4, 2.0, 3.0, and 4.0 cell doublings after transfer of cells from D2O-containing medium into medium containing only normal water. The results obtained from analysis of both native and denatured nuclear DNAs indicate that this DNA replicates semiconservatively. From an analysis of intact associations of kDNA, it appears that this DNA doubles once per generation and that the newly synthesized DNA does not segregate from parental DNA. Fractions of covalently closed single circular molecules and of open circular and unit length linear molecules were obtained from associations of kDNA by sonication, sucrose sedimentation, and cesium chloride-ethidium bromide equilibrium gradient centrifugation. Buoyant density profiles obtained from these fractions indicate that: (a) doubling of the kDNA results from the replication of each circular molecule rather than from repeated replication of a small fraction of the circular molecules; (b) replication of kDNA is semiconservative rather than conservative, but there is recombination between the circles at an undefined time during the cell cycle.
    [Abstract] [Full Text] [Related] [New Search]