These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Magnetic resonance imaging and behavioral analysis of immature rats with kaolin-induced hydrocephalus: pre- and postshunting observations. Author: Del Bigio MR, Crook CR, Buist R. Journal: Exp Neurol; 1997 Nov; 148(1):256-64. PubMed ID: 9398467. Abstract: The motor and cognitive dysfunction associated with hydrocephalus remains a clinical problem in children. We hypothesized that young rats with hydrocephalus should exhibit similar dysfunction and that the dysfunction should be reversible by shunting. Hydrocephalus was induced in 3-week-old rats by injection of kaolin into the cisterna magna. Rats were assessed by T2-weighted images obtained with a 7-T magnetic resonance device and by repeated behavioral testing including ability to traverse a narrow beam and ability to find a hidden platform in a water pool. Some of the rats underwent a shunting procedure 1 or 4 weeks after kaolin injection. Magnetic resonance images were used to measure ventricle size. They clearly demonstrated increased signal in periventricular white matter, which corresponded to increased brain water content. A flow-void phenomenon was observed in the cerebral aqueduct. Ability to traverse the beam did not correlate with the degree of ventriculomegaly. Ability to swim to the hidden platform demonstrated a progressive impairment of learning function which may have been accentuated by motor disability. When rats were shunted after 1 week, the behavioral dysfunction was prevented. Late shunting after 4 weeks was associated with gradual recovery of the behavioral disability which was not complete after 4 weeks. We conclude that early shunting is superior to late shunting with regard to behavioral dysfunction. High-resolution MR imaging shows features in hydrocephalic rats similar to those found in hydrocephalic humans.[Abstract] [Full Text] [Related] [New Search]