These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Transcriptional regulation of the human IL5 gene by ionizing radiation in Jurkat T cells: evidence for repression by an NF-AT-like element. Author: Lu-Hesselmann J, Messer G, van Beuningen D, Kind P, Peter RU. Journal: Radiat Res; 1997 Dec; 148(6):531-42. PubMed ID: 9399698. Abstract: Eosinophilia is often observed in patients with parasitic infections and atopic diseases like allergic asthma and atopic dermatitis. Additionally, it is a typical feature of the inflammatory reaction after therapeutic and accidental exposure to ionizing radiation. This uniquely specific phenomenon regulated by the cytokine interleukin 5 (IL-5) suggests specific control for IL5 gene expression. In this study, we generated promoter-CAT constructs containing different human IL-5 promoter regions spanning from positions -507 to +43. Transfection experiments in Jurkat T cells revealed that the promoter sequence from -57 to +43 was required for constitutive and inducible IL-5 promoter activity. Low baseline CAT activity could be enhanced by treatment with phenylmercuric acetate (PMA) or the combination of PMA and calcium ionophore. The promoter region between positions -97 and +43 showed responsiveness to low-dose X rays. Electrophoretic mobility shift assays demonstrated that the region from -117 to -97 was responsive to irradiation. Transcription factors specifically bound to this sequence showed a dose-dependent response to single doses of X rays between 1 and 8 Gy. Competition analysis indicated that the protein-DNA complexes at this region were related to the nuclear factor of activated T cells (NF-AT). Further confirmation was obtained by the addition of specific antibodies into protein-DNA reactions. For the first time, we have demonstrated that specific DNA binding of NF-ATp at the promoter region from -117 to -97 is involved in transcriptional regulation of the human IL5 gene in response to ionizing radiation.[Abstract] [Full Text] [Related] [New Search]