These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Isolation and chromosomal localization of a cornea-specific human keratin 12 gene and detection of four mutations in Meesmann corneal epithelial dystrophy. Author: Nishida K, Honma Y, Dota A, Kawasaki S, Adachi W, Nakamura T, Quantock AJ, Hosotani H, Yamamoto S, Okada M, Shimomura Y, Kinoshita S. Journal: Am J Hum Genet; 1997 Dec; 61(6):1268-75. PubMed ID: 9399908. Abstract: Keratin 12 (K12) is an intermediate-filament protein expressed specifically in corneal epithelium. Recently, we isolated K12 cDNA from a human corneal epithelial cDNA library and determined its full sequence. Herein, we present the exon-intron boundary structure and chromosomal localization of human K12. In addition, we report four K12 mutations in Meesmann corneal epithelial dystrophy (MCD), an autosomal dominant disorder characterized by intraepithelial microcysts and corneal epithelial fragility in which mutations in keratin 3 (K3) and K12 have recently been implicated. In the human K12 gene, we identified seven introns, defining eight individual exons that cover the coding sequence. Together the exons and introns span approximately 6 kb of genomic DNA. Using FISH, we found that the K12 gene mapped to 17q12, where a type I keratin cluster exists. In this study, four new K12 mutations (Arg135Gly, Arg135Ile, Tyr429Asp, and Leu140Arg) were identified in three unrelated MCD pedigrees and in one individual with MCD. All mutations were either in the highly conserved alpha-helix-initiation motif of rod domain 1A or in the alpha-helix-termination motif of rod domain 2B. These sites are essential for keratin filament assembly, suggesting that the mutations described above may be causative for MCD. Of particular interest, one of these mutations (Tyr429Asp), detected in both affected individuals in one of our pedigrees, is the first mutation to be identified within the alpha-helix-termination motif in type I keratin.[Abstract] [Full Text] [Related] [New Search]