These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: BCR/ABL-induced leukemogenesis causes phosphorylation of Hef1 and its association with Crkl.
    Author: de Jong R, van Wijk A, Haataja L, Heisterkamp N, Groffen J.
    Journal: J Biol Chem; 1997 Dec 19; 272(51):32649-55. PubMed ID: 9405482.
    Abstract:
    BCR/ABL is considered responsible for the development of Philadelphia chromosome-positive leukemia. Experimental animal models, such as transgenic mice, have demonstrated unambiguously that Bcr/Abl is capable of inducing leukemogenesis. The adaptor molecule Crkl is a major in vivo substrate of the deregulated Bcr/Abl tyrosine kinase and functions as a molecular link with other signaling proteins. While associated in vivo with Bcr/Abl through its SH3 domain, Crkl can interact simultaneously via its SH2 domain with other tyrosine-phosphorylated proteins. Here we report the identification of prominently tyrosine-phosphorylated proteins with a molecular mass of approximately 110 kDa, which bind specifically to the Crkl SH2 domain in leukemic tissues of P190BCR/ABL transgenic mice. We demonstrate that these proteins are identical to Hef1/Cas-L, which is related to p130(Cas). The proto-oncoprotein p120(Cbl) and Hef1, but not p130(Cas), were detectably phosphorylated on tyrosine in P190Bcr/Abl-expressing leukemic cells and were found in complex with Crkl, showing the existence of protein complexes in P190Bcr/Abl leukemic cells, consisting of P190Bcr/Abl, Crkl, and Hef1 or p120(Cbl). This supports a model in which Crkl acts as mediator between Bcr/Abl and downstream effectors. Since Hef1 is involved in the beta1-integrin signaling pathway, our study demonstrates that Bcr/Abl could specifically interfere with normal beta1-integrin signaling.
    [Abstract] [Full Text] [Related] [New Search]