These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Differential phosphorylation of T-47D human breast cancer cell substrates by D1-, D3-, E-, and A-type cyclin-CDK complexes. Author: Sarcevic B, Lilischkis R, Sutherland RL. Journal: J Biol Chem; 1997 Dec 26; 272(52):33327-37. PubMed ID: 9407125. Abstract: The cyclin-dependent kinases (CDKs) promote cell cycle transitions in mammalian cells by phosphorylation of key substrates. To characterize substrates of the G1 and S phase cyclin-CDK complexes, including cyclin D1-CDK4, cyclin D3-CDK4, cyclin D3-CDK6, cyclin E-CDK2, and cyclin A-CDK2, which are largely undefined, we phosphorylated T-47D breast cancer cell nuclear lysates partially purified by ion-exchange chromatography with purified baculovirus expressed cyclin-CDK complexes. A comparison of the substrates that were phosphorylated by the different cyclin D-CDKs revealed some common as well as specific substrates. Hence, cyclin D1-CDK4 specifically phosphorylated a 38-kDa protein while cyclin D3-CDK4 specifically phosphorylated proteins of 105, 102, and 42 kDa. A 24-kDa protein was phosphorylated by both complexes. Cyclin D3-CDK6 exhibited similar substrate preferences to cyclin D3-CDK4, phosphorylating the 105- and 102-kDa proteins but not the 24-kDa protein. Hence, both the cyclin D1 and D3 as well as CDK4 and CDK6 subunits can confer substrate specificity on the overall cyclin D-CDK complex. Cyclin E-CDK2 and cyclin A-CDK2 phosphorylated a greater number of substrates than the cyclin D-CDKs, ranging in size from 10 kDa to over 200 kDa. Twenty-two substrates were common to both complexes, while six were specific for cyclin A-CDK2 and only one protein of 34 kDa was specific for cyclin E-CDK2. These studies indicate that cyclins E and A modulate the specificity of CDK2 and have demonstrated substrates that may be important for the specific roles of these cyclin-CDKs during G1 and S phase progression. Protein sequencing of one of the cyclin-CDK substrates characterized in this study identified this protein as nucleolin, a previously characterized CDC2 (CDK1) substrate, thus indicating the utility of this approach in identifying cyclin-CDK targets. These results show that both the cyclin and CDK subunits can regulate the substrate specificity of the overall cyclin-CDK complex and have demonstrated numerous substrates of D-, E-, and A-type cyclin-CDK complexes potentially involved in regulating transit through the G1 and S phases of the cell cycle.[Abstract] [Full Text] [Related] [New Search]