These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Antithrombotic efficacy of inactivated active site recombinant factor VIIa is shear dependent in human blood.
    Author: Orvim U, Barstad RM, Orning L, Petersen LB, Ezban M, Hedner U, Sakariassen KS.
    Journal: Arterioscler Thromb Vasc Biol; 1997 Nov; 17(11):3049-56. PubMed ID: 9409292.
    Abstract:
    Several studies have indicated a profound role for factor VII(a) [FVII(a)] in venous and arterial thrombogenesis. In the present study, we quantified the inhibitory efficacy of dansyl-glutamyl-glycyl-arginyl-recombinant FVIIa (DEGR-rFVIIa) on acute thrombus formation. Thrombus formation was elicited by immobilized tissue factor (TF) in a parallel-plate perfusion chamber device at blood flow conditions characterized by wall shear rates of 100 S-1 (veins) and 650 S-1 (medium-sized healthy arteries). Native human blood was drawn directly from an antecubital vein by a pump into a heparin-coated mixing device in which DEGR-rFVIIa (0.09 to 880 nmol/L final plasma concentration) or buffer was mixed homogeneously with flowing blood. Subsequently, the blood was passed over a plastic coverslip coated with TF and phospholipids in the parallel-plate perfusion chamber. Fibrin deposition, platelet-fibrin adhesion, and platelet thrombus volume triggered by this surface were measured by morphometry. DEGR-rFVIIa inhibited thrombus formation in a dose-dependent manner, but the efficacy was shear rate dependent. At a wall shear rate of 100 S-1, the IC50 (50% inhibition) was 30 nmol/L, whereas at 650 S-1, the IC50 was 0.6 nmol/L. Binding studies to immobilized TF under flow conditions using surface plasmon resonance revealed a significantly higher on-rate for DEGR-rFVIIa and FVIIa than for FVII, 2.8 x 10(5), 2.6 x 10(5), and 1.8 x 10(5) M-1 S-1, respectively. This indicates that a contributing factor to the shear-dependent efficacy may be a differential importance of on-rates at arterial and venous blood flow conditions.
    [Abstract] [Full Text] [Related] [New Search]