These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Normalization of neuronal metabolic dysfunction after surgery for temporal lobe epilepsy. Evidence from proton MR spectroscopic imaging. Author: Cendes F, Andermann F, Dubeau F, Matthews PM, Arnold DL. Journal: Neurology; 1997 Dec; 49(6):1525-33. PubMed ID: 9409340. Abstract: Surgery is a safe and effective treatment for patients with temporal lobe epilepsy (TLE) who do not respond adequately to anticonvulsant medication and in whom the seizure generator can be identified and safely removed. Proton MR spectroscopic imaging (MRSI) can image and quantify neuronal damage in patients with TLE based on reduced signals from N-acetylaspartate (NAA), a compound localized exclusively in neurons. We performed proton MRSI in patients with TLE before and after surgical treatment to determine whether NAA or other resonance intensities changed in the temporal lobes of patients with TLE after surgery, and whether these changes correlated with surgical outcome. N-acetylaspartate resonance intensity relative to creatine (NAA/Cr) was abnormally low preoperatively in at least one temporal lobe in all 14 patients examined. It was low ipsilaterally in the patients who became seizure free and bilaterally in those who did not. Postoperatively, it increased to the normal range on the side of surgery in all patients who became seizure free. In the one patient who became seizure free and who had low NAA/Cr in both temporal lobes before surgery, NAA/Cr values in the contralateral, unoperated temporal lobe also increased to the normal range. In contrast, NAA relative intensity ratios did not change in those patients who continued to have seizures after surgery. The creatine resonance intensity (Cr) in the temporal lobes was high, relative to the brainstem, in seven patients preoperatively. After surgery, the Cr remained high in two patients, both of whom continued to have seizures. We conclude that NAA (and Cr) abnormalities in TLE do not result solely from neuronal loss and gliosis but can be reversible after postsurgical control of seizures. This implies that the NAA and Cr abnormalities in patients with TLE, at least in part, are dynamic markers of both local and remote physiologic dysfunction associated with ongoing seizures.[Abstract] [Full Text] [Related] [New Search]