These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hypoxia-induced inhibition of calcium channels in guinea-pig taenia caeci smooth muscle cells.
    Author: Rekalov V, Juránek I, Máleková L, Bauer V.
    Journal: J Physiol; 1997 Nov 15; 505 ( Pt 1)(Pt 1):107-19. PubMed ID: 9409475.
    Abstract:
    1. The effects of hypoxia on whole-cell current in single smooth muscle cells and on a high K(+)-induced contraction of strips of the guinea-pig taenia caeci were studied. 2. In physiological salt solution (PSS) and K(+)-based pipette solution, hypoxia (PO2 = 20 mmHg) reversibly inhibited both the inward Ca2+ current (ICa) and outward Ca(2+)-activated K+ current (IK(Ca)) components of the whole-cell current. 3. In PSS and Cs(+)-based pipette solution, hypoxia reversibly suppressed ICa by 30 +/- 5% at 0 mV. 4. When Ba2+ was used as a charge carrier, the IBa was suppressed by hypoxia in a potential-dependent manner, with the maximum of 40 +/- 7% at +10 mV. Alterations of concentrations of EGTA, GDB beta S or ATP in the pipette solution did not change the inhibitory effects of hypoxia on ICa and IBa. 5. In PSS with 2 mM CaCl2 replaced by CoCl2, hypoxia did not affect the Ca2+ influx-independent potassium current. 6. In cells voltage clamped at -20 mV hypoxia reversibly inhibited the spontaneous transient outward currents. 7. The response of high K(+)-contracted taenia caeci to hypoxia was composed of an initial rapid relaxation followed by a small transient contraction and slow relaxation. The transient contraction was blocked by atropine (1-10 microM), while relaxations were unaffected by atropine and guanethidine (10 microM). 8. The results show that hypoxia reversibly inhibits ICa and secondarily suppresses IK(Ca) due to decreased Ca2+ influx through Ca2+ channels. 9. It is suggested that inhibition of ICa was responsible for the rapid relaxation, whereas transient contraction may have been due to release of acetylcholine from nerve terminals upon hypoxia.
    [Abstract] [Full Text] [Related] [New Search]