These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hypoosmotic shock activates Ca2+ channels in isolated nerve terminals.
    Author: Mongin AA, Aksentsev SL, Orlov SN, Konev SV.
    Journal: Neurochem Int; 1997 Dec; 31(6):835-43. PubMed ID: 9413845.
    Abstract:
    Influence of hypotonic swelling on Ca2+ (45Ca2+) uptake in rat brain synaptosomes was studied. A decrease in medium osmolality from 310 to 260-180 mOsm led to a progressive stimulation of 45Ca2+ accumulation. The effect was blocked by verapamil (IC50 = 5 microM), CoCl2 (IC50 = 58 microM) and retained at a fixed concentration of external sodium indicating the involvement of Ca2+ channels rather than Na+/Ca2+ exchange in swelling-induced Ca2+ influx. The populations of calcium channels observed in hypoosmotic and depolarizing conditions are different in three aspects: (i) kinetics of 45Ca2+ entry; (ii) insensitivity to dihydropyridines and omega-conotoxin GVIA; (iii) insensitivity to preliminary depolarization by high potassium. The effects of swelling and depolarization on Ca2+ uptake were additive. No change in membrane potential monitored with diS-C3-(5) was recorded during synaptosome hypotonic swelling. The results suggest the existence in synaptosomal plasma membrane of volume-dependent calcium-permeable channels with properties distinct from those of the voltage-dependent calcium channels. Activation of these channels may constitute an early event in volume regulation of nerve terminals in anisoosmotic conditions.
    [Abstract] [Full Text] [Related] [New Search]