These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Sequence effects on the relative thermodynamic stabilities of B-Z junction-forming DNA oligomeric duplexes.
    Author: Otokiti EO, Sheardy RD.
    Journal: Biophys J; 1997 Dec; 73(6):3135-41. PubMed ID: 9414225.
    Abstract:
    Circular dichroism (CD) and ultraviolet absorption techniques were employed in characterizing the sequence-dependent thermodynamic stabilities of B-Z junction-forming DNA duplexes. The Watson strand of the duplexes has the general sequence (5meC-G)4-NXYG-ACTG (where N = A or G and XY represents all permutations of pyrimidine bases). Duplexes were generated by mixing stoichiometric amounts of the complementary strands. Circular dichroism studies indicate that each duplex is fully right-handed at low salt (e.g., 115 mM Na+) but undergoes a salt-induced conformational transition to a structure that possesses both left- and right-handed conformations at high salt (4.5 M Na+), and hence a B-Z junction. Optical melting studies of the DNA duplexes at fixed DNA concentration with total Na+ concentration ranging from 15 mM to 5.0 M were determined. A nonlinear dependence of the melting temperature (Tm) on [Na+] was observed. Thermodynamic parameters at Na+ concentrations of 115 mM and 4.5 M with a wide range of DNA concentrations were determined from UV optical melting studies via construction of van't Hoff plots. A change of a single dinucleotide within these duplexes significantly affected the helix stabilities. The experimentally obtained free energies for the duplex to single-strand transitions were in close agreement with predicted values obtained from two different methods.
    [Abstract] [Full Text] [Related] [New Search]