These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Truncated trkB receptors on nonneuronal cells inhibit BDNF-induced neurite outgrowth in vitro.
    Author: Fryer RH, Kaplan DR, Kromer LF.
    Journal: Exp Neurol; 1997 Dec; 148(2):616-27. PubMed ID: 9417837.
    Abstract:
    The function of truncated trkB receptors during nervous system plasticity and regeneration is currently unknown. The extensive nonneuronal localization of truncated trkB-T1 receptors, coupled with their up-regulation by CNS glial cells in response to injury, has led to the speculation that these receptors may sequester BDNF and NT-4/5 to reduce their local availability and, thus, limit axonal sprouting. Conversely, trkB-T1 receptors could bind and present neurotrophins to injured axons and facilitate their regeneration in a manor analogous to that proposed for p75(NTR) receptors on Schwann cells. To address this issue, we used an in vitro coculture paradigm in which wild-type 3T3 NIH fibroblasts or two different 3T3 cell clones stably expressing trkB-T1 receptors served as monolayer substrates upon which to evaluate the effect of trkB-T1 receptors on nonneuronal cells to influence neurotrophin (NGF, BDNF, NT-3, and NT-4/5)-induced neurite outgrowth from retinoic acid (RA)-treated SY5Y neuroblastoma cells. In these experiments, BDNF and NT-4/5 produce a strong phosphorylation of trk receptors on the RA-SY5Y cells and induce differentiation of the SY5Y cells (as measured by the development of neurofilament-positive neuritic processes). This ability of the trkB ligands to stimulate neurite outgrowth is dose dependent since increasing concentrations of BDNF (5, 25, and 100 ng/ml) result in an increased percentage of SY5Y cells developing neurites and in progressively longer neurites from SY5Y cells on the control 3T3 monolayers. In these experiments, BDNF and NT-4/5 induce the strongest neurite outgrowth, followed by NT-3 and then NGF. When trkB-T1 receptors are present on the 3T3 cell substratum both BDNF- and NT-4/5-induced neurite extension from the SY5Y cells are strongly inhibited. In contrast, NGF-induced neurite growth is unaffected and NT-3-associated growth is somewhat reduced. These results suggest that the inhibitory effect of the trkB-T1 receptors on the nonneuronal cell substrates is selective for neurite outgrowth that is mediated via the trkB-kinase receptors on the neuroblastoma cells. This ability of trkB-T1 receptors on the nonneuronal substratum to inhibit BDNF-induced neurite outgrowth can be overcome by the addition of high concentrations of BDNF (1 microg/ml). Binding assays using 125I-BDNF suggest that this inhibitory effect could be mediated via binding and internalization of BDNF by the trkB-T1 receptors on the 3T3 cells. These results provide strong support for the hypothesis that the up-regulation of trkB-T1 receptors on astrocytes following CNS lesions enhances the sequestration of the trkB ligands, BDNF and NT- 4/5, at the site of reactive gliosis and, thus, contributes to the inhibition of CNS axonal regeneration from neurons expressing trkB-kinase receptors by removing their ligands from the extracellular environment.
    [Abstract] [Full Text] [Related] [New Search]