These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Differential expression of NDF/neuregulin receptors ErbB-3 and ErbB-4 and involvement in inhibition of neuronal differentiation. Author: Pinkas-Kramarski R, Eilam R, Alroy I, Levkowitz G, Lonai P, Yarden Y. Journal: Oncogene; 1997 Dec 04; 15(23):2803-15. PubMed ID: 9419971. Abstract: Two receptor tyrosine kinases, ErB-3 and ErbB-4, mediate signaling by Neu differentiation factors (NDFs, also called neuregulins), while ErbB-1 and ErbB-2 serve as co-receptors. We show that the two NDF/neuregulin receptors differ in spatial and temporal expression patterns: The kinase-defective receptor, ErbB-3, is expressed primarily in epithelial layers of various organs, in the peripheral nervous system, and in adult brain, whereas ErbB-4 is restricted to the developing central nervous system and to the embryonic heart. An example of alternating expression of the two receptors is provided by the developing cerebellum: During postnatal cerebellar development, ErbB-4 expression slightly decreases along with a decline in NDF transcription, whereas ErbB-3 expression commences after the peak of neurogenesis. To study functional differences, we established primary brain cultures and found that ErbB-3 was expressed only in oligodendrocytes, whereas ErbB-4 expression was shared by oligodendrocytes, astrocytes and neurons. Blocking the action of endogenous NDF in vitro, by using a soluble form of ErbB-4, accelerated neurite outgrowth in both primary cultures and in neuronal-type cultures of the P19 teratocarcinoma, suggesting an inhibitory effect of NDF on neural differentiation. Apparently, ErbB-3 is associated with proliferation of P19 cells, whereas ErbB-4 correlates with a differentiated phenotype. We conclude that the two NDF receptors play distinct, rather than redundant, developmental and physiological roles.[Abstract] [Full Text] [Related] [New Search]