These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Phosphatidic acid elicits calcium mobilization and actin polymerization through a tyrosine kinase-dependent process in human neutrophils: a mechanism for induction of chemotaxis.
    Author: Siddiqui RA, English D.
    Journal: Biochim Biophys Acta; 1997 Nov 08; 1349(1):81-95. PubMed ID: 9421199.
    Abstract:
    Phospholipids mediate important effects as extracellular messengers in diverse biological systems. We investigated the effects of phosphatidic acid, a biologically active phospholipid potentially involved in the inflammatory process, on calcium mobilization and actin polymerization in human neutrophils and correlated these effects with induction of chemotactic migration. Intermediate-chain length phosphatidic acid (DiC10-PA) induced a biphasic increase in intracellular Ca2+ characterized by a rapid rise commencing immediately upon addition of stimulus followed by a secondary increase which, unlike the initial response, was eliminated by chelation of extracellular Ca2+. Neither of these responses were induced by C10-lysophosphatidic acid or diacylglycerol. The tyrosine kinase inhibitor herbimycin-A (5-10 microg/ml) completely blunted the initial but not the delayed response effected by DiC10-PA. Long-chain phosphatidic acid (DiC18:1) induced only an initial rapid increase in intracellular Ca2+ and this response was similarly markedly attenuated by herbimycin-A. Among several physiologically relevant phospholipids, only phosphatidic acid was able to induce Ca2+ mobilization; phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol -- used individually or in mixed liposomes -- were without effect. Phosphatidic acid conferred calcium-mobilizing activity upon inactive liposome preparations and phosphatidic acid-enriched cellular plasma membranes possessed similar calcium-mobilizing activity. Both DiC10-PA and DiC18:1-PA induced actin polymerization in neutrophils at rates which mirrored the influence of each agent on Ca2+ mobilization. Herbimycin-A blunted the initial increase in actin polymerization effected by phosphatidic acid but had no effect on the delayed, EGTA-sensitive phase. DiC10-PA and DiC18:1-PA also induced neutrophil migration along a concentration gradient. Phospholipids that failed to induce a calcium transient, including phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, and phosphatidylinositol, likewise failed to induce either actin polymerization or chemotactic migration. Unlike chemotaxis induced by zymosan-activated human serum, phosphatidate-induced chemotaxis was strongly inhibited by pretreatment of cells with herbimycin-A. Consistent with these observations, phosphatidic acid induced the tyrosine phosphorylation of several proteins as early as 10 s after stimulation. Phosphorylation of two distinct proteins with approximate molecular sizes of 72 and 82 kDa was inhibited by levels of herbimycin A used to effectively inhibit calcium mobilization, actin polymerization and chemotaxis. Thus, in neutrophilic leukocytes, extracellular phosphatidic acid induces a unique tyrosine kinase-based signalling pathway that results in calcium mobilization and actin polymerization. These processes may promote directed cellular migration as a consequence of the interaction of phosphatidic acid with neutrophil plasma membranes.
    [Abstract] [Full Text] [Related] [New Search]