These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The proximal sequence element (PSE) plays a major role in establishing the RNA polymerase specificity of Drosophila U-snRNA genes. Author: Jensen RC, Wang Y, Hardin SB, Stumph WE. Journal: Nucleic Acids Res; 1998 Jan 15; 26(2):616-22. PubMed ID: 9421524. Abstract: Most small nuclear RNA (snRNA) genes are transcribed by RNA polymerase II, but some (e.g., U6) are transcribed by RNA polymerase III. In vertebrates a TATA box at a fixed distance downstream of the proximal sequence element (PSE) acts as a dominant determinant for recruiting RNA polymerase III to U6 gene promoters. In contrast, vertebrate snRNA genes that contain a PSE but lack a TATA box are transcribed by RNA polymerase II. In plants, transcription of both classes of snRNA genes requires a TATA box in addition to an upstream sequence element (USE), and polymerase specificity is determined by the spacing between these two core promoter elements. In these examples, the PSE (or USE) is interchangeable between the two classes of snRNA genes. Here we report the surprising finding that the Drosophila U1 and U6 PSEs cannot functionally substitute for each other; rather, determination of RNA polymerase specificity is an intrinsic property of the PSE sequence itself. The alteration of two or three base pairs near the 3'-end of the U1 and U6 PSEs was sufficient to switch the RNA polymerase specificity of Drosophila snRNA promoters in vitro. These findings reveal a novel mechanism for achieving RNA polymerase specificity at insect snRNA promoters.[Abstract] [Full Text] [Related] [New Search]