These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Radicicol leads to selective depletion of Raf kinase and disrupts K-Ras-activated aberrant signaling pathway.
    Author: Soga S, Kozawa T, Narumi H, Akinaga S, Irie K, Matsumoto K, Sharma SV, Nakano H, Mizukami T, Hara M.
    Journal: J Biol Chem; 1998 Jan 09; 273(2):822-8. PubMed ID: 9422737.
    Abstract:
    Activation of Ras leads to the constitutive activation of a downstream phosphorylation cascade comprised of Raf-1, mitogen-activated protein kinase (MAPK) kinase, and MAPK. We have developed a yeast-based assay in which the Saccharomyces cerevisiae mating pheromone-induced MAPK pathway relied on co-expression of K-Ras and Raf-1. Radicicol, an antifungal antibiotic, was found to inhibit the K-ras signaling pathway reconstituted in yeast. In K-ras-transformed, rat epithelial, and K-ras-activated, human pancreatic carcinoma cell lines, radicicol inhibited K-Ras-induced hyperphosphorylation of Erk2. In addition, the level of Raf kinase was significantly decreased in radicicol-treated cells, whereas the levels of K-Ras and MAPK remained unchanged. These results suggest that radicicol disrupts the K-Ras-activated signaling pathway by selectively depleting Raf kinase and raises the possibility that pharmacological destabilization of Raf kinase could be a new and powerful approach for the treatment of K-ras-activated human cancers.
    [Abstract] [Full Text] [Related] [New Search]