These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A functional role for histidyl residues of the UDP-glucuronic acid carrier in rat liver endoplasmic reticulum membranes. Author: Battaglia E, Radominska-Pandya A. Journal: Biochemistry; 1998 Jan 06; 37(1):258-63. PubMed ID: 9425046. Abstract: Previous studies have documented the presence of protein-mediated transport of UDP-glucuronic acid (UDP-GlcUA) in rat liver endoplasmic reticulum (ER). To determine the crucial amino acids of the membrane transporter and evaluate their function in regulating the glucuronidation reaction, we examined the effect of histidyl-specific irreversible inhibitors on the uptake of radiolabeled UDP-GlcUA in rat liver ER. Inactivation of uptake (initial rate) was more pronounced with hydrophobic reagents [diethyl pyrocarbonate (DEPC), p-bromophenacyl bromide] as compared to the more hydrophilic reagent (p-nitrobenzenesulfonic acid methyl ester). DEPC was used to further characterize the inhibition because of its greater specificity for protein histidyl residues. While initial [14C]UDP-GlcUA uptake rates were diminished by DEPC treatment of intact microsomes, the accumulation of isotope at equilibrium was not significantly affected, indicating no loss of vesicle integrity. A pKa of approximately 7 for the modified residue(s) of the transporter supported the alkylation of imidazole moieties. Protection against inactivation was observed with UDP-GlcUA as well as other nucleotide-sugars known for their interaction with this transporter. Uptake activity of the transporter (Vmax) but not UDP-GlcUA binding (Km) was affected by a limited inactivation. Furthermore, a partial inactivation of the transporter impaired the binding of the photoaffinity label [beta-32P]5-azido-UDP-GlcUA to UDP-glucuronosyltransferases (UGTs) in intact, but not in detergent-disrupted, ER vesicles. These results demonstrate the involvement of histidyl residue(s) in the UDP-GlcUA uptake process in rat liver ER, provide additional evidence for the lumenal orientation of the UGT active site, and support the view that translocation of the UGT cosubstrate is a rate-limiting step of the glucuronidation reaction.[Abstract] [Full Text] [Related] [New Search]