These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Functional role for the angiotensin II receptor (AT1A) 3'-untranslated region in determining cellular responses to agonist: evidence for recognition by RNA binding proteins. Author: Thekkumkara TJ, Thomas WG, Motel TJ, Baker KM. Journal: Biochem J; 1998 Jan 15; 329 ( Pt 2)(Pt 2):255-64. PubMed ID: 9425107. Abstract: We demonstrate a functional role for the 3'-untranslated region (3'-UTR) of the angiotensin II (Ang II) receptor subtype AT1A mRNA in Chinese hamster ovary (CHO-K1) cells by stably transfecting the coding region of the receptor gene with or without the 845 bp 3'-UTR. Two cell lines expressing similar levels of cell-surface receptors (with 3'-UTR, Bmax=571 fmol/mg protein; without 3'-UTR, Bmax=663 fmol/mg protein) were used in the present study. Both cell lines expressed high-affinity receptors (with 3'-UTR, Kd=0.83 nM; without 3'-UTR, Kd=0.82 nM), and binding studies with 125I-labelled Ang II in the presence of GTP[S] demonstrated that both coupled to heterotrimeric G-proteins. Despite these similarities, significant differences were observed for receptor-mediated cell signalling pathways. In cells without the 3'-UTR, Ang II stimulated an increase in cAMP accumulation (11-fold above control) and in cells with the 3'-UTR no stimulation was observed, which was consistent with previous observations in most endogenous Ang II receptor (AT1)-expressing cells. Activation of cAMP by Ang II in cells without the 3'-UTR correlated with an inhibition of DNA synthesis, determined by [3H]thymidine incorporation. Ang II-mediated responses were blocked by EXP3174, a selective non-peptide receptor antagonist. We also observed differences in the transient profiles of intracellular calcium between cells with and without the 3'-UTR in response to Ang II. In cells with the 3'-UTR, a sustained level of intracellular calcium was observed after Ang II stimulation, whereas cells without the 3'-UTR displayed a full return to basal level within 50 s of Ang II treatment. Even though the expressed exogenous gene is under the control of a constitutively expressing promoter (cytomegalovirus promoter), Northern-blot analysis revealed a considerably greater accumulation of AT1A mRNA in cells without the 3'-UTR compared with cells with the 3'-UTR. Analysis of the decay rate of the AT1A mRNA in cells with and without the 3'-UTR revealed that the normally unstable AT1A receptor mRNA became highly stable by removing its 3'-UTR, identifying a role for the 3'-UTR in mRNA destabilization. Interestingly, both cells express similar levels of receptors at the cell surface, suggesting that the 3'-UTR is also involved in the efficient translation and/or translocation of the receptor protein to the plasma membrane. We hypothesized that these 3'-UTR-mediated functions of the receptor are regulated by RNA-binding proteins. To identify possible RNA-binding proteins for the AT1A 3'-UTR, cellular extracts were prepared from parental CHO-K1 cells and 3'-UTR-binding assays, electrophoretic mobility-shift assays and UV crosslinking studies were performed. A major cellular protein of 55 kDa was identified, which specifically interacted with the 3'-UTR. Our data suggest that the 3'-UTR of the AT1A can control specific receptor functions, perhaps via selective recognition of the 3'-UTR by RNA-binding proteins.[Abstract] [Full Text] [Related] [New Search]