These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Delaying the onset of M phase in NIH 3T3 cells blocked in early S phase occurs via accumulating cyclin B1 and tyrosine-phosphorylated p34cdc2 in the nucleus. Author: David-Pfeuty T, Nouvian-Dooghe Y, Rouillard D. Journal: Biol Cell; 1997 Jun; 89(3):179-97. PubMed ID: 9429302. Abstract: An affinity-purified antibody (anti-Cdc2C) raised against the carboxy terminal sequence LDNQIKKM of p34cdc2 uncovered in NIH 3T3 cells a protein subpopulation, the location and the level of accumulation of which evolve during progression through the cell cycle: it first emerges inside the nucleus in late G1/early S phase and continues to build up principally in this location throughout S phase; a cytoplasmic expression then becomes apparent near the end of S phase, develops during G2 and sometimes prevails over the nuclear expression; it finally relocates to the nucleus in early prophase. We propose that a major part of this subpopulation would represent p34cdc2 molecules existing inside a complex with cyclin B1. NIH 3T3 cells arrested in early S phase with aphidicolin do not commit prematurely to mitosis which indicates that the regulatory pathway involved in preserving the temporal order of S and M phases is functioning in these conditions. Conjugated Western blot analysis and immunofluorescence microscopy showed that cyclin A, cyclin B1 and tyrosine-phosphorylated p34cdc2 continue to build up predominantly in the nucleus of the arrested cells. After release from the block, the cells rapidly reenter S and G2 phases and, concomitantly, cyclin B1 and tyrosine-phosphorylated p34cdc2 relocate to the cytoplasm before redistributing again in the nucleus in early prophase. These data would suggest that delaying the onset of M phase in NIH 3T3 cells in which the rate of DNA replication is reduced, is first ensured by a mechanism that prevents the cytoplasmic relocation of inactive p34cdc2/cyclin B1 complexes continually forming in the nucleus once the G1 period of mitotic cyclin instability is over.[Abstract] [Full Text] [Related] [New Search]