These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Small-conductance Ca(2+)-dependent K+ channels activated by ATP in murine colonic smooth muscle.
    Author: Koh SD, Dick GM, Sanders KM.
    Journal: Am J Physiol; 1997 Dec; 273(6):C2010-21. PubMed ID: 9435508.
    Abstract:
    The patch-clamp technique was used to determine the ionic conductances activated by ATP in murine colonic smooth muscle cells. Extracellular ATP, UTP, and 2-methylthioadenosine 5'-triphosphate (2-MeS-ATP) increased outward currents in cells with amphotericin B-perforated patches. ATP (0.5-1 mM) did not affect whole cell currents of cells dialyzed with solutions containing ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. Apamin (3 x 10(-7) M) reduced the outward current activated by ATP by 32 +/- 5%. Single channel recordings from cell-attached patches showed that ATP, UTP, and 2-MeS-ATP increased the open probability of small-conductance, Ca(2+)-dependent K+ channels with a slope conductance of 5.3 +/- 0.02 pS. Caffeine (500 microM) enhanced the open probability of the small-conductance K+ channels, and ATP had no effect after caffeine. Pyridoxal phosphate 6-azophenyl-2',4'-disulfonic acid tetrasodium (PPADS, 10(-4) M), a nonselective P2 receptor antagonist, prevented the increase in open probability caused by ATP and 2-MeS-ATP. PPADS had no effect on the response to caffeine. ATP-induced hyperpolarization in the murine colon may be mediated by P2y-induced release of Ca2+ from intracellular stores and activation of the 5.3-pS Ca(2+)-activated K+ channels.
    [Abstract] [Full Text] [Related] [New Search]