These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ouabain reduces net acid secretion and increases pHi by inhibiting NH4+ uptake on rat tIMCD Na(+)-K(+)-ATPase. Author: Wall SM. Journal: Am J Physiol; 1997 Dec; 273(6):F857-68. PubMed ID: 9435673. Abstract: In the rat terminal inner medullary collecting duct (tIMCD), Na+ pump inhibition reduces transepithelial net acid secretion (JtAMM) [JH = total CO2 absorption (JtCO2)+ total ammonia secretion] and increases resting intracellular pH (pHi). The increase in pHi and reduction in JH that follow ouabain addition do not occur in the absence of NH4+ nor when NH4+ is substituted with another weak base. The purpose of this study was to explore the mechanism of the NH4(+)-dependent reduction in JtCO2 and increase in pHi that follow ouabain addition. We hypothesized that NH4+ enters the tIMCD cell through the Na(+)-K(+)-ATPase with proton release in the cytosol. To test this hypothesis, tIMCDs were dissected from deoxycorticosterone-treated rats and perfused in vitro with symmetrical physiological saline solutions containing 6 mM NH4Cl. Since K+ and NH4+ compete for a common binding site on the Na+ pump, increasing extracellular K+ should limit NH4+ (and hence net H+) uptake by the Na+ pump. Upon increasing extracellular K+ concentration from 3 to 12 mM, the NH4(+)-dependent, ouabain-induced increase in pHi and reduction in JtCO2 were attenuated. In the presence but not in the absence of NH4+, reducing Na+ pump activity by limiting Na+ entry reduced JtCO2 and attenuated ouabain-induced alkalinization. Ouabain-induced alkalinization was not dependent on the presence of HCO3-/CO2 and was not reproduced with BaCl2 or bumetanide addition. Therefore, ouabain-induced alkalinization is not mediated by the Na(+)-K(+)-2Cl- cotransporter or a HCO3- transporter and is not mediated by changes in membrane potential. In conclusion, on the basolateral membrane of the tIMCD cell, NH4+ uptake is mediated by the Na(+)-K(+)-ATPase. These data provide an explanation for the reduction in net acid secretion in the tIMCD observed following administration of amiloride or with dietary K+ loading.[Abstract] [Full Text] [Related] [New Search]