These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Regulation of retinoidal actions by diazepinylbenzoic acids. Retinoid synergists which activate the RXR-RAR heterodimers. Author: Umemiya H, Fukasawa H, Ebisawa M, Eyrolles L, Kawachi E, Eisenmann G, Gronemeyer H, Hashimoto Y, Shudo K, Kagechika H. Journal: J Med Chem; 1997 Dec 19; 40(26):4222-34. PubMed ID: 9435893. Abstract: In human HL-60 promyelocytic leukemia cells, diazepinylbenzoic acid derivatives can exhibit either antagonistic or synergistic effects on the differentiation-inducing activities of natural or synthetic retinoids, the activity depending largely on the nature of the substituents on the diazepine ring. Thus, a benzolog of the retinoid antagonist LE135 (6), 4-(13H-10,11,12,13-tetrahydro-10, 10,13,13,15-pentamethyldinaphtho[2,3-b][1,2-e]diazepin-7-yl) benzoic acid (LE540, 17), exhibits a 1 order of magnitude higher antagonistic potential than the parental LE135 (6). In contrast, 4-[5H-2,3-(2,5-dimethyl-2,5-hexano)-5-methyldibenzo[b,e] [1,4]diazepin-11-yl]-benzoic acid (HX600, 7), a structural isomer of the antagonistic LE135 (6), enhanced HL-60 cell differentiation induced by RAR agonists, such as Am80 (2). This synergistic effect was further increased for a thiazepine, HX630 (29), and an azepine derivative, HX640 (30); both synergized with Am80 (2) more potently than HX600 (7). Notably, the negative and positive effects of the azepine derivatives on retinoidal actions can be related to their RAR-antagonistic and RXR-agonistic properties, respectively, in the context of the RAR-RXR heterodimer.[Abstract] [Full Text] [Related] [New Search]