These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: New generation dopaminergic agents. 1. Discovery of a novel scaffold which embraces the D2 agonist pharmacophore. Structure-activity relationships of a series of 2-(aminomethyl)chromans.
    Author: Mewshaw RE, Kavanagh J, Stack G, Marquis KL, Shi X, Kagan MZ, Webb MB, Katz AH, Park A, Kang YH, Abou-Gharbia M, Scerni R, Wasik T, Cortes-Burgos L, Spangler T, Brennan JA, Piesla M, Mazandarani H, Cockett MI, Ochalski R, Coupet J, Andree TH.
    Journal: J Med Chem; 1997 Dec 19; 40(26):4235-56. PubMed ID: 9435894.
    Abstract:
    A series of 2-(aminomethyl)chromans (2-AMCs) was synthesized and evaluated for their affinity and selectivity for both the high- and low-affinity agonist states (D2High and D2Low, respectively) of the dopamine (DA) D2 receptor. The 7-hydroxy-2-(aminomethyl)chroman moiety was observed to be the primary D2 agonist pharmacophore. The 2-methylchroman moiety was discovered to be an entirely novel scaffold which could be used to access the D2 agonist pharmacophore. Attaching various simple alkyl and arylalkyl side chains to the 7-hydroxy 2-AMC nucleus had significant effects on selectivity for the D2High receptor vs the 5HT1A and alpha 1 receptors. A novel DA partial agonist, (R)-(-)-2-(benzylamino)methyl)chroman-7-ol [R-(-)-35c], was identified as having the highest affinity and best selectivity for the D2High receptor vs the alpha 1 and 5HT1A receptors. Several regions of the 2-AMC nucleus were modified and recognized as potential sites to modulate the level of intrinsic activity. The global minimum conformer of the 7-hydroxy-2-AMC moiety was identified as fulfilling the McDermed model D2 agonist pharmacophoric criteria and was proposed as the D2 receptor-bound conformation. Structure-activity relationships gained from these studies have aided in the synthesis of D2 partial agonists of varying intrinsic activity levels. These agents should be of therapeutic value in treating disorders resulting from hypo- and hyperdopaminergic activity, without the side effects associated with complete D2 agonism or antagonism.
    [Abstract] [Full Text] [Related] [New Search]