These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A 5' dystrophin duplication mutation causes membrane deficiency of alpha-dystroglycan in a family with X-linked cardiomyopathy.
    Author: Bies RD, Maeda M, Roberds SL, Holder E, Bohlmeyer T, Young JB, Campbell KP.
    Journal: J Mol Cell Cardiol; 1997 Dec; 29(12):3175-88. PubMed ID: 9441825.
    Abstract:
    5'-mutations in the dystrophin gene can result in cardiomyopathy without clinically-apparent skeletal myopathy. The effect of dystrophin mutations on the assembly and stability of the dystrophin associated protein (DAP) complex in human heart are not fully understood. The molecular defect in the dystrophin complex was explored in a family with an X-linked pedigree and severe dilated cardiomyopathy. Dystrophin gene analysis demonstrated a 5' duplication involving exons 2-7, which encodes the N-terminal actin binding domain of dystrophin. Ribonuclease protection and PCR assays demonstrated a reduction in muscle promoter transcribed dystrophin mRNA in the heart compared to skeletal muscle. A deficiency of cardiac dystrophin protein was observed by Western blot and lack of membrane localization by immunocytochemistry. The cardiac expression of the dystrophin related protein utrophin was increased, and the 43 kDa (beta-dystroglycan), 50 kDa (alpha-sarcoglycan) and 59 kDa (syntrophin) dystrophin associated proteins (DAPs) were co-isolated and present in nearly normal amounts in the membrane. However, cardiac dystrophin deficiency and increased utrophin expression were associated with loss of extracellular 156 kDa dystrophin associated glycoprotein (alpha-dystroglycan) binding to the cardiomyocyte membrane. alpha-Dystroglycan is responsible for linkage of the dystrophin complex to the extracellular matrix protein laminin. Therefore, 5' dystrophin mutations can reduce cardiac dystrophin mRNA, protein expression, and dystrophin function in X-linked cardiomyopathy (XLCM). The presence of membrane-associated beta-dystroglycan, alpha-sarcoglycan, syntrophin, and utrophin are insufficient to maintain cardiac function. This XLCM family has a 5' dystrophin gene mutation resulting in cardiac dystrophin deficiency and a loss of alpha-dystroglycan membrane binding.
    [Abstract] [Full Text] [Related] [New Search]