These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mitochondria, hexokinase and pyruvate kinase isozymes in the aerobic glycolysis of tumor cells. Author: Petrucci D, Cesare P, Colafarina S. Journal: Ital J Biochem; 1997 Sep; 46(3):131-41. PubMed ID: 9442422. Abstract: At 9 mM glucose, experimental results show that mitochondrial phosphate depletion (induced by glucose phosphorylation, catalyzed by mitochondrial hexokinase) reduces the activities of the respiratory chain, oxidative phosphorylation, and glutaminase. Consequently, the 14C-lactate oxidation to 14CO2 is lowered in the presence of glucose. The fall of ATP level triggers a high aerobic glycolysis by deinhibiting fructose-6-P kinase. NADH, generated by enhanced glyceraldehyde-3-P dehydrogenase activity, increases the reducing power. Moreover, the lactate dehydrogenase (LDH) system is shifted toward lactate formation, while NAD+ is regenerated and the oligomycin-inhibited ATP production is replaced by the iodoacetate-inhibited ATP production. From 14CO2 production and lactate accumulation it is calculated that about 60% of 14C-glucose which disappears is channelled into extraglycolytic reactions. On the contrary, 82% of glucose below l mM is metabolized through non-glycolytic reactions. The pyruvate kinase-M2 (PK-M2) inhibition does not limit the glycolytic flow from 9 mM glucose, but it may cause sustained gluconeogenesis.[Abstract] [Full Text] [Related] [New Search]