These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibition of inositol trisphosphate-induced calcium release by cyclic ADP-ribose in A7r5 smooth-muscle cells and in 16HBE14o- bronchial mucosal cells. Author: Missiaen L, Parys JB, De Smedt H, Sienaert I, Sipma H, Vanlingen S, Maes K, Kunzelmann K, Casteels R. Journal: Biochem J; 1998 Feb 01; 329 ( Pt 3)(Pt 3):489-95. PubMed ID: 9445374. Abstract: Ca2+ release from intracellular stores occurs via two families of intracellular channels, each with their own specific agonist: Ins(1, 4,5)P3 for the Ins(1,4,5)P3 receptor and cyclic ADP-ribose (cADPR) for the ryanodine receptor. We now report that cADPR inhibited Ins(1, 4,5)P3-induced Ca2+ release in permeabilized A7r5 cells with an IC50 of 20 microM, and in permeabilized 16HBE14o- bronchial mucosal cells with an IC50 of 35 microM. This inhibition was accompanied by an increase in specific [3H]Ins(1,4,5)P3 binding. 8-Amino-cADPR, but not 8-bromo-cADPR, antagonized this effect of cADPR. The inhibition was prevented by a whole series of inositol phosphates (10 microM) that did not affect Ins(1,4,5)P3-induced Ca2+ release, and by micromolar concentrations of PPi and various nucleotide di- or triphosphates. We propose that cADPR must interact with a novel regulatory site on the Ins(1,4,5)P3 receptor or on an associated protein. This site is neither the Ins(1,4,5)P3-binding domain, which prefers Ins(1,4,5)P3 and only binds nucleotides and PPi in the millimolar range, nor the stimulatory adenine nucleotide binding site.[Abstract] [Full Text] [Related] [New Search]