These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Caffeine mediates cation influx and intracellular Ca2+ release in leech P neurones.
    Author: Schoppe J, Hochstrate P, Schlue WR.
    Journal: Cell Calcium; 1997 Nov; 22(5):385-97. PubMed ID: 9448945.
    Abstract:
    We investigated the effect of caffeine on the intracellular free Ca2+ concentration ([Ca2+]i) of leech P neurones by using the fluorescent indicator Fura-2. Caffeine induced a [Ca2+]i increase that was strongly reduced, but not abolished, in Ca(2+)-free solution. The effect of caffeine on [Ca2+]i was dose-dependent: while 5 mM caffeine evoked a persistent [Ca2+]i increase that could be elicited repetitively, 10 mM caffeine or more induced a transient [Ca2+]i increase that was strongly reduced upon subsequent applications at the same concentration. Surprisingly, the cells remained fully responsive to a moderately increased caffeine concentration. The caffeine-induced [Ca2+]i increase was not blocked by millimolar concentrations of La3+, Mg2+, Cd2+, Zn2+, Co2+, Ni2+, or Mn2+. While La3+ and Mg2+ had no effect on the caffeine response, the other cations caused irreversible changes in the Fura-2 fluorescence. The inhibitors of intracellular Ca2+ pumps-thapsigargin, cyclopiazonic acid (CPA), and 2,5-di-(t-butyl)-1,4-hydroquinone (BHQ)--had no effect on the caffeine-induced [Ca2+]i increase at normal extracellular Ca2+ concentration, but they reduced it in Ca(2+)-free solution. Ryanodine had no effect on the caffeine-induced [Ca2+]i increase at normal extracellular Ca2+ concentration, and also in Ca(2+)-free solution it seemed to be largely ineffective. Caffeine evoked complete fluctuations of the membrane potential. The effect in Ca2+ free and in Na(+)-free solution suggests that the depolarizing response components were mainly due to Na+ influx, while Ca2+ reduced the Na+ influx and/or activated mechanisms which re- or hyperpolarize the cells. It is concluded that leech P neurones possess caffeine-sensitive intracellular Ca2+ stores, as well as caffeine-sensitive ion channels, in the plasma membrane that are activated by a voltage-independent mechanism. The plasma membrane channels are permeable to various divalent cations including Ca2+, and possibly also to Na+.
    [Abstract] [Full Text] [Related] [New Search]