These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Gene therapy targeting peripheral blood CD34+ hematopoietic stem cells of HIV-infected individuals.
    Author: Gervaix A, Schwarz L, Law P, Ho AD, Looney D, Lane T, Wong-Staal F.
    Journal: Hum Gene Ther; 1997 Dec 10; 8(18):2229-38. PubMed ID: 9449376.
    Abstract:
    Gene therapy is a promising treatment modality for acquired immunodeficiency syndrome (AIDS). Autologous transplantation with genetically altered pluripotent hematopoietic stem cells encoding anti-human immunodeficiency virus (HIV) genes could in theory completely and permanently reconstitute all blood lineages and immune functions with cells resistant to HIV. Recent studies showed that CD34+ stem cell can be mobilized in HIV-infected individuals after granulocyte colony-stimulating factor (G-CSF) administration without major side effects or increase of viral load. In this study, peripheral blood CD34+ cells of five HIV-infected individuals were mobilized with G-CSF and after leukapheresis and enrichment, subjected to retroviral transduction with genes encoding anti-HIV ribozyme-decoy fusion molecules. These cells were tested for the ability to give rise to progeny cells, for retroviral transduction efficiency, and for expression of the transgene. CD34+-derived macrophage-like cells were also challenged with HIV. Results showed that CD34+ cells from HIV-infected individuals gave rise to similar numbers of progeny colonies as cells from healthy donors. The transduction efficiency of these cells varied from 68.8 to 100% as assessed by DNA polymerase chain reaction (PCR) of the transgene in individual colonies. CD34+-derived macrophages expressed anti-HIV genes and displayed a substantial and sustained inhibition of HIV replication as compared to untransduced cells. Furthermore, we showed that after thawing, cryopreserved CD34+ cells from these individuals have survival, proliferation, and transduction parameters comparable to fresh cells. Thus, CD34+ cells from HIV-infected patients can be stored for further genetic manipulations with improved vectors or anti-HIV genes as they become available.
    [Abstract] [Full Text] [Related] [New Search]