These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Absence of increased neuropeptide Y neuronal activity before and during the luteinizing hormone (LH) surge may underlie the attenuated preovulatory LH surge in middle-aged rats.
    Author: Sahu A, Kalra SP.
    Journal: Endocrinology; 1998 Feb; 139(2):696-702. PubMed ID: 9449643.
    Abstract:
    A large body of evidence suggests that the neuroendocrine axis plays a major role in the reproductive aging of female rats. Since increased hypothalamic neuropeptide Y (NPY) neurosecretion is crucial in the preovulatory LH discharge in young rats, we tested the hypothesis that diminution in the preovulatory LH surge in middle-aged (MA) rats may be due to altered neurosecretory activity in NPYergic neurons. In Exp 1, we examined NPY levels in six microdissected hypothalamic nuclei, including median eminence (ME), arcuate nucleus (ARC), and medial preoptic area (MPOA), at 1000, 1200, 1400, 1600, 1800, 2000, or 2200 h on the day of proestrus in young (2.5- to 3-month old) and MA (7- to 9-month old) regularly cycling rats. At 1000 h, ME NPY levels in young rats were significantly lower than those in MA rats. In young rats, the ME NPY levels were significantly increased at 1400 h before the LH surge in the afternoon and thereafter decreased progressively during the interval of the LH surge. In MA rats, however, ME NPY levels decreased in the afternoon in association with an attenuated LH surge. In addition, in the ARC and MPOA, the other hypothalamic sites associated with induction of LH surge, NPY levels increased before and during the LH surge in young rats, no change in NPY levels in these nuclei was observed in association with the attenuated LH surge in MA rats. Also, NPY levels in the ARC and MPOA during the afternoon were significantly lower in MA compared with those in young animals. These results demonstrated the absence of an antecedent increase in NPY levels, specifically in the ME and ARC, during the afternoon of proestrus in MA animals. In a second experiment, we evaluated whether the absence of dynamic changes in NPY levels in the ME and ARC in MA rats was due to altered hypothalamic NPY gene expression. Regularly cycling young (2.5- to 3-month-old) and MA (8- to 10-month-old) rats were killed at 1000, 1200, 1400, 1600, 1800, 2000, or 2200 h on the day of proestrus. The medial basal hypothalamus was processed for prepro-NPY messenger RNA (mRNA) measurement by ribonuclease protection assay. In young rats, prepro-NPY mRNA levels were significantly increased at 1200 h and remained elevated throughout the afternoon. In contrast, in MA rats prepro-NPY mRNA levels remained unchanged before and during the attenuated LH surge. These results clearly indicate that the augmentation in NPY neuronal activity before and during the LH surge seen in young rats fails to manifest itself in middle-aged rats. As hypothalamic NPY participates in the induction of LHRH surge, our results suggest that reduced LHRH and LH surges in MA rats may be due to diminution in NPY secretion in these animals.
    [Abstract] [Full Text] [Related] [New Search]