These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Specificity of mutagenesis by 4-aminobiphenyl: mutations at G residues in bacteriophage M13 DNA and G-->C transversions at a unique dG(8-ABP) lesion in single-stranded DNA. Author: Verghis SB, Essigmann JM, Kadlubar FF, Morningstar ML, Lasko DD. Journal: Carcinogenesis; 1997 Dec; 18(12):2403-14. PubMed ID: 9450488. Abstract: Mutagenesis by the human bladder carcinogen 4-aminobiphenyl (ABP) was studied in single-stranded DNA from a bacteriophage M13 cloning vector. In comparison to ABP lesions in double-stranded DNA, lesions in single-stranded DNA were approximately 70-fold more mutagenic and 50-fold more genotoxic. Sequencing analysis of ABP-induced mutations in the lacZ gene revealed exclusively base-pair substitutions, with over 80% of the mutations occurring at G sites; the G at position 6310 accounted for 25% of the observed mutations. Among the sequence changes at G sites, G-->T transversions predominated, followed by G-->C transversions and G-->A transitions. In order to further elucidate the mutagenic mechanism of ABP, an oligonucleotide containing the major DNA adduct, N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG(8-ABP)), was situated within the PstI site of a single-stranded M13 genome. After in vivo replication of the adduct containing ABP-modified and control (unadducted) genomes, the mutational frequency and mutational specificity of the dG(8-ABP) lesion were determined. The targeted mutational efficiency was approximately 0.01%, and the primary mutation observed was the G-->C transversion. Thus dG(8-ABP), albeit weakly mutagenic at the PstI site, can contribute to the mutational spectrum of ABP lesions.[Abstract] [Full Text] [Related] [New Search]