These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Progesterone increases levels of mu-opioid receptor mRNA in the preoptic area and arcuate nucleus of ovariectomized, estradiol-treated female rats. Author: Petersen SL, LaFlamme KD. Journal: Brain Res Mol Brain Res; 1997 Dec 01; 52(1):32-7. PubMed ID: 9450674. Abstract: Estradiol (E2) and progesterone (P) play different roles in generating the preovulatory surge release of luteinizing hormone-releasing hormone (LH-RH) and luteinizing hormone (LH). Results of our previous studies suggest that at least some of these steroid-specific effects may be mediated by beta-endorphinergic neurons. However, it is also possible that E2 and P differentially regulate responsiveness to opioids by altering mu-opioid receptor gene expression. To test this hypothesis, we used quantitative in situ hybridization histochemistry (ISHH) to measure the effects of E2 and P on mu-opioid receptor mRNA levels in cells of the preoptic area (POA) and arcuate nucleus (Arc). We examined several groups of animals in the morning and afternoon on the day of LH surge release: (1) 1-week ovariectomized (OVX) rats with or without E2 treatment sacrificed between 09:00 and 09:30 h (48 h after E2 capsules inserted); (2) OVX with or without E2 treatment sacrificed between 15:30 and 16:00 h; and (3) OVX with both E2 and P treatment sacrificed between 15:30 and 16:00 h (approximately 54 h after E2 and 6 h after P administration). We found that E2 had no effect on morning or afternoon levels of mu-opioid receptor mRNA levels in either the POA or Arc. In contrast, P treatment increased afternoon levels of mu-opioid receptor mRNA in both regions. These findings indicate that differential effects of E2 and P on LH-RH release may be mediated by steroid-specific effects on mu-opioid receptor gene expression in neurons of the POA and/or Arc.[Abstract] [Full Text] [Related] [New Search]