These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Alterations in myocardial signal transduction due to aging and chronic dynamic exercise. Author: Roth DA, White CD, Podolin DA, Mazzeo RS. Journal: J Appl Physiol (1985); 1998 Jan; 84(1):177-84. PubMed ID: 9451633. Abstract: Normal aging without disease leads to diminished chronotropic and inotropic responses to catecholamine stimulation, resulting in depressed cardiac function with stress. The purpose of this study was to determine molecular mechanisms for decrements in adrenergic responsiveness of the left ventricle (LV) due to aging and to study the effects of chronic dynamic exercise on signal transduction. We measured beta-adrenergic receptor (beta-AR) density, adenylyl cyclase (AC) activity, and G-protein content and distribution in LV from 66 male Fischer 344 rats from three age groups that were either sedentary or treadmill trained (60 min/days, 5 days/wk, 10 wk at 75% of the maximal capacity). Final ages were 7 mo (young), 15 mo (middle-age), and 25 mo (old). There was no significant difference in beta-AR density among groups as a function of age or training. AC production of adenosine 3',5'-cyclic monophosphate (cAMP) with the use of five pharmacological stimulations revealed that old sedentary myocardium had depressed basal, receptor-dependent, G-protein-dependent, and AC catalyst stimulation (30-43%) compared with hearts from young and middle-age sedentary rats. Training did not alter AC activity in either middle-age or old groups but did increase G-protein-dependent cAMP production in young myocardium (12-34%). Immunodetectable concentrations of stimulatory and inhibitory G proteins (Gs and Gi, respectively) showed 43% less total Gs with similar Gi content in hearts from old sedentary compared with middle-age sedentary rats. When compared with young sedentary animals, Gi content was 39 and 50% higher in middle-age sedentary and old sedentary myocardium, respectively. With age, there was a significant shift in the alpha-subunit of Gs distribution from cytosolic fractions of LV homogenates to membrane-bound fractions (8-12% redistribution in middle-age sedentary vs. old sedentary). The most significant training effect was a decrease in Gi content in hearts from old trained rats (23%), which resulted in values comparable with young sedentary rats and reduced the Gi/Gs ratio by 27% in old-rat LV. We report that age-associated reductions in cardiovascular beta-adrenergic responsiveness correspond with alterations in postreceptor adrenergic signaling rather than with a decrease in receptor number. Chronic dynamic exercise partially attenuates these reductions through alterations in postreceptor elements of cardiac signal transduction.[Abstract] [Full Text] [Related] [New Search]