These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Multiple-breath washin of helium and sulfur hexafluoride in sustained microgravity. Author: Prisk GK, Elliott AR, Guy HJ, Verbanck S, Paiva M, West JB. Journal: J Appl Physiol (1985); 1998 Jan; 84(1):244-52. PubMed ID: 9451642. Abstract: We performed multiple-breath washouts of N2 and simultaneous washins of He and SF6 with fixed tidal volume (approximately 1,250 ml) and preinspiratory lung volume (approximately the subject's functional residual capacity in the standing position) in four normal subjects (mean age 40 yr) standing and supine in normal gravity (1 G) and during exposure to sustained microgravity (microG). The primary objective was to examine the influence of diffusive processes on the residual, nongravitational ventilatory inhomogeneity in the lung in microG. We calculated several indexes of convective ventilatory inhomogeneity from each gas species. A normal degree of ventilatory inhomogeneity was seen in the standing position at 1 G that was largely unaltered in the supine position. When we compared the standing position in 1 G with microG, there were reductions in phase III slope in all gases, consistent with a reduction in convection-dependent inhomogeneity in the lung in microG, although considerable convective inhomogeneity persisted in microG. The reductions in the indexes of convection-dependent inhomogeneity were greater for He than for SF6, suggesting that the distances between remaining nonuniformly ventilated compartments in microG were short enough for diffusion of He to be an effective mechanism to reduce gas concentration differences between them.[Abstract] [Full Text] [Related] [New Search]