These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Regulation of system A amino acid transport in 3T3-L1 adipocytes by insulin. Author: Su TZ, Wang M, Syu LJ, Saltiel AR, Oxender DL. Journal: J Biol Chem; 1998 Feb 06; 273(6):3173-9. PubMed ID: 9452428. Abstract: The insulin-stimulated uptake of 2-(methylamino)isobutyric acid (MeAIB), a nonmetabolizable substrate for system A, in 3T3-L1 adipocytes was investigated. As cells took on a more adipogenic phenotype, the insulin-stimulated versus the saturable basal MeAIB uptake increased by 5-fold. The induced transport activity showed properties characteristic of system A, with a Km value of 190 microM. The half-life of the induced system A activity was independent of de novo mRNA and protein synthesis and was not accelerated by ambient amino acids, therefore, it was mechanistically distinct from the previously described adaptive and hormonal regulation of system A. Inhibition of mitogen-activated protein kinase kinase by PD98059, Ras farnesylation by PD152440 and B581, p70(S6K) by rapamycin, and phosphatidylinositol 3-kinase (PI 3'-K) by wortmannin and LY294002 revealed that only wortmannin and LY294002 inhibited the insulin-induced MeAIB uptake with IC50 values close to that previously reported for inhibition of PI 3'-K. These results suggest that the Ras/mitogen-activated protein kinase and pp70(S6K) insulin signaling pathways are neither required nor sufficient for insulin stimulation of MeAIB uptake, and activation of PI 3'-K or a wortmannin/LY294002-sensitive pathway may play an important role in regulation of system A transport by insulin in 3T3-L1 cells.[Abstract] [Full Text] [Related] [New Search]