These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c.
    Author: Rossé T, Olivier R, Monney L, Rager M, Conus S, Fellay I, Jansen B, Borner C.
    Journal: Nature; 1998 Jan 29; 391(6666):496-9. PubMed ID: 9461218.
    Abstract:
    Following exposure of cells to stimuli that trigger programmed cell death (apoptosis), cytochrome c is rapidly released from mitochondria into the cytoplasm where it activates proteolytic molecules known as caspases that specifically cleave the amino-acid sequence DEVD and are crucial for the execution of apoptosis. The protein Bcl-2 interferes with this activation of caspases by preventing the release of cytochrome c. Here we study these molecular interactions during apoptosis induced by the protein Bax, a pro-apoptotic homologue of Bcl-2. We show that in cells transiently transfected with bax, Bax localizes to mitochondria and induces the release of cytochrome c, activation of caspase-3, membrane blebbing, nuclear fragmentation, and cell death. Caspase inhibitors do not affect Bax-induced cytochrome c release but block caspase-3 activation and nuclear fragmentation. Unexpectedly, Bcl-2 also fails to prevent Bax-induced cytochrome c release, although it co-localizes with Bax to mitochondria. Cells overexpressing both Bcl-2 and Bax show no signs of caspase activation and survive with significant amounts of cytochrome c in the cytoplasm. These findings indicate that Bcl-2 can interfere with Bax killing downstream of and independently of cytochrome c release.
    [Abstract] [Full Text] [Related] [New Search]