These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Reduction of membrane protein hydrophobicity by site-directed mutagenesis: introduction of multiple polar residues in helix D of bacteriorhodopsin.
    Author: Chen GQ, Gouaux E.
    Journal: Protein Eng; 1997 Sep; 10(9):1061-6. PubMed ID: 9464570.
    Abstract:
    Introduction of polar and charged residues on the lipid-exposed face of transmembrane proteins using site-directed mutagenesis represents a novel approach to render membrane proteins more soluble in aqueous solution. We have sequentially introduced as many as five polar and charged amino acids onto the lipid-exposed face of helix D of bacteriorhodopsin from Halobacterium salinarium. The most polar mutant (Q4D) has four glutamine residues at positions 113, 116, 120 and 124 and an aspartate at position 117. In combination with wild-type residues Gln105, Thr107, Thr121 and Thr128, the Q4D mutant has a nearly uninterrupted stripe of polar residues on the surface of helix D. All of the mutants refold, bind retinal and the resulting pigments exhibit light- and dark-adapted UV and visible spectroscopic properties that are similar to the wild-type pigment, indicating that the secondary, tertiary and active site structures are similar to the wild-type protein. These results demonstrate that micelle-solubilized bacteriorhodopsin can tolerate multiple non-conservative substitution of amino acids that face the non-polar portion of the lipid bilayer in vivo, thus lending credence to the notion of partial or complete solubilization of integral membrane proteins by site-directed mutagenesis.
    [Abstract] [Full Text] [Related] [New Search]