These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Two opposite signal transducing mechanisms regulate a G-protein-coupled guanylyl cyclase.
    Author: Alfonzo MJ, de Becemberg IL, de Villaroel SS, de Herrera VN, Misle AJ, de Alfonzo RG.
    Journal: Arch Biochem Biophys; 1998 Feb 01; 350(1):19-25. PubMed ID: 9466815.
    Abstract:
    Membrane-bound guanylyl cyclase (GC) is regulated by muscarinic receptors (mAChRs). Carbamylcholine (CC) induces a "dual" biological response on GC activity. Thus, an activation is observed at 0.1 nM and a maximal response at 1 nM CC. However, at higher agonist concentration (> 100 nM), there is an agonist-dependent inhibition of GC. This CC dual response is affected by 4-DAMP and HDD (M3 antagonists), which produce a right-shift of the CC curve; the maximal CC dose response with 4-DAMP is more potent than that with HDD. Moreover, AFDX-DS (an M2 antagonist) increases basal activity and decreases the agonist-dependent inhibition. Neither the CC response nor the CC maximal dose responses are affected by pirenzepine (PZ, M1 antagonist). The agonist-dependent stimulation of GC activity is inhibited by 4-DAMP showing a -log IC50 = 8.4 +/- 0.4, while AFDX116 DS poorly inhibits such activity with a -log IC50 = 5.0 +/- 0.2. The agonist-independent (basal) GC activity also was inhibited by 4-DAMP, in a dose-dependent manner, with an IC50 = 8.5 +/- 0.2. Nonetheless, other muscarinic antagonists (PZ and HDD) were not able to inhibit this basal GC. Pertussis toxin treatment produces a complete blockade of the agonist-dependent inhibition of GC with a full expression of the agonist-dependent activation of membrane-bound GC. These results indicate that membrane-bound GC is regulated by muscarinic agents through two opposite signaling pathways; one involves the activation of GC via an M3 mAchR coupled to a PTX-insensitive G protein, while the GC inhibition is mediated through a PTX-sensitive Gi/o protein possibly coupled to an M2 mAChR.
    [Abstract] [Full Text] [Related] [New Search]