These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Microcinematographic studies of flow patterns in the excised rabbit aorta and its major branches. Author: Barakat AI, Karino T, Colton CK. Journal: Biorheology; 1997; 34(3):195-221. PubMed ID: 9474263. Abstract: Arterial fluid mechanics may play a role as a localizing factor for early atherosclerosis. Flow patterns in natural rabbit aortas rendered transparent were studied using a microcinematographic visualization technique. The aortic arch exhibited a single cell of clockwise-rotating helical secondary flow along the ventral and inner walls. Flow separation occurred proximal to the two arch branches with flow reversal proximal to the brachiocephalic artery. Sinusoidal flow rendered the helical motion more pronounced in systole, while the reverse flow zone periodically expanded and contracted. Steady flow in the abdominal aorta revealed streamlines which follow slow looping trajectories lateral to ostia before tracing helical paths into the branches. Flow separation was present along the dorsal wall of the aorta opposite the superior mesenteric artery. With the exception of the left renal artery, steady flow wall shear stresses were higher distal to ostia than proximal. Spatial gradients of wall shear stress were larger around branches than elsewhere. Similar to observed flow patterns, sites of enhanced macromolecular permeability, as observed previously in the normal rabbit aorta, follow a clockwise helical pattern in the arch and exhibit a distribution around ostia that correlates to some degree with regions of elevated shear stress gradients.[Abstract] [Full Text] [Related] [New Search]