These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: EEG coherence changes during finger tapping in acallosal and normal children: a study of inter- and intrahemispheric connectivity. Author: Knyazeva M, Koeda T, Njiokiktjien C, Jonkman EJ, Kurganskaya M, de Sonneville L, Vildavsky V. Journal: Behav Brain Res; 1997 Dec; 89(1-2):243-58. PubMed ID: 9475632. Abstract: The EEG inter- and intrahemispheric coherences (ICoh and HCoh) in the theta, alpha and beta bands were studied in an acallosal group (ACCG) of five children and a normal group of 30 sex- and age-matched children (NG) during resting and tapping conditions. Being functionally deficient, tapping in the ACCG was characterized by increased intertap intervals and variability (in right-hand tapping) and by variability together with decreased synchronization (in bimanual tapping). In the ACCG, frontal, central and parietal ICohs were shown to be smaller, while temporal ICohs were larger under all conditions (see also Koeda, T., Knyazeva, M., Jonkman, J., Njiokiktjien, C., De Sonneville, L., Vildavsky, V., 1995. The resting EEG in acallosal children: compensatory left hemisphere mechanisms? Electroencephalogr. Clin. Neurophysiol. 95, 397-407). The effect was most pronounced in the EEG beta band. The sagittal HCohs, including fronto-central, fronto-parietal, and centro-parietal HCohs within both hemispheres, were larger in the ACCG, whereas temporal HCoh (fronto-temporal, centro-temporal, parieto-temporal and occipito-temporal) were smaller, suggesting rearrangement of intracortical activity associated with callosal agenesis. Tapping induced an increase in ICoh and HCoh between frontal, central and parietal areas in the NG, and weak enhancement only in the left temporal HCoh in the ACCG. The beta band, the most reactive band in the NG, was 'silent' in the ACCG, suggesting deviant cortical function during motor activity as well.[Abstract] [Full Text] [Related] [New Search]