These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mutagenesis study of the glycosylphosphatidylinositol phospholipase C of Trypanosoma brucei.
    Author: Carnall N, Webb H, Carrington M.
    Journal: Mol Biochem Parasitol; 1997 Dec 15; 90(2):423-32. PubMed ID: 9476790.
    Abstract:
    The glycosylphosphatidylinositol phospholipase C (GPI-PLC) from Trypanosoma brucei is particularly effective in hydrolysing the GPI-anchors of some proteins. The enzyme is inhibited by Zn2+ and p-chloromercurylphenylsulphonic acid, both of which can act as sulphydryl reagents, suggesting that a cysteine residue may be important in catalysis. Single cysteine to serine mutants have been produced for all eight cysteines in GPI-PLC; all the mutants were fully active in vitro and were still susceptible to p-chloromercurylphenylsulphonic acid inhibition. In contrast, a single histidine 34 to glutamine mutation totally inactivated GPI-PLC. The histidine was chosen after a sequence alignment with the Bacillus cereus phosphatidylinositol phospholipase C (PI-PLC) suggested a conservation of active site residues, including histidine 34 which is central to the proposed reaction mechanism (Heinz D.W., Ryan M., Bullock T.L., Griffith O.H. EMBO J 1995;14:3855-3863). The results suggest that the GPI-PLC and bacterial PI-PLCs have conserved active sites and that the inhibition of GPI-PLC by sulphydryl reagents can occur through more than one residue.
    [Abstract] [Full Text] [Related] [New Search]