These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ca2+ entry through cardiac L-type Ca2+ channels modulates beta-adrenergic stimulation in mouse ventricular myocytes.
    Author: Sako H, Sperelakis N, Yatani A.
    Journal: Pflugers Arch; 1998 Apr; 435(5):749-52. PubMed ID: 9479031.
    Abstract:
    beta-adrenergic receptor (beta-AR) stimulation increases cardiac L-type Ca2+ channel (CaCh) currents via cAMP-dependent phosphorylation. We report here that the affinity and maximum response of CaCh to isoproterenol (Iso), in mouse ventricular myocytes were significantly higher when Ba2+ was used as the charge carrier (IBa) instead of Ca2+ (ICa). The EC50 and maximum increase of peak currents were 43.7 +/- 7.9 nM and 1.8 +/- 0.1-fold for ICa and 23.3 +/- 4.7 nM and 2.4 +/- 0.1-fold for IBa. When cells were dialyzed with the faster Ca2+ chelator, BAPTA, both sensitivity and maximum response of ICa to Iso were significantly augmented compared to cells with EGTA (EC50 of 23.1 +/- 5.2 nM and maximal increase of 2.2 +/- 0.1-fold). Response of ICa to forskolin was also significantly increased when cells were dialyzed with BAPTA or when currents were measured in Ba2+. In contrast, depletion of the sarcoplasmic reticulum (SR) Ca2+ stores by ryanodine did not alter sensitivity of ICa to Iso or forskolin. These results suggest that the Ca2+ entering through CaCh regulates cAMP-dependent phosphorylation, and such negative feedback may play a significant role in cellular Ca2+ homeostasis and contraction in cardiac cells during beta-AR stimulation.
    [Abstract] [Full Text] [Related] [New Search]