These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Submaximal stimulation of porcine endothelial cells causes focal Ca2+ elevation beneath the cell membrane.
    Author: Graier WF, Paltauf-Doburzynska J, Hill BJ, Fleischhacker E, Hoebel BG, Kostner GM, Sturek M.
    Journal: J Physiol; 1998 Jan 01; 506 ( Pt 1)(Pt 1):109-25. PubMed ID: 9481676.
    Abstract:
    1. Endothelial cell activation is correlated with increased cytosolic Ca2+ concentration, often monitored with cytoplasmic Ca2+ dyes, such as fura-2 and Calcium Green-1. We tested the hypothesis that during weak stimulation of porcine coronary artery endothelial cells, focal, subplasmalemmal Ca2+ elevations occur which are controlled by cell membrane Na(+)-Ca2+ exchange near mitochondrial membrane and superficial endoplasmic reticulum (SER). 2. Bulk Ca2+ concentration ([Ca2+]b) was monitored using fura-2 or Calcium Green-1 and subplasmalemmal Ca2+ concentration ([Ca2+]sp) was determined with FFP-18. The distribution of the SER network was estimated using laser scanning and deconvolution microscopy. 3. Sodium fluoride (10 mmol l-1) and submaximal concentrations of bradykinin (Bk; 1 nmol l-1) stimulated Ca2+ entry with no increase in [Ca2+]b. Although inositol 1,4,5-trisphosphate formation and intracellular Ca2+ release in response to both stimuli were similar, Ca2+ entry in response to NaF exceeded that in response to 1 nmol l-1 BK by fourfold, suggesting additional effects of NaF on Ca+ entry pathways but stimulation via intracellular Ca2+ release. 4. Prevention of Na(+)-Ca2+ exchange activity by decreasing extracellular Na+ unmasked intracellular Ca2+ release in response to NaF and 1 nmol l-1 Bk, indicated by an increase in [Ca2+]b. Thereby, NaF depleted Bk-releasable Ca2+ pools, while mitochondrial Ca2+ content (released with FCCP or oligomycin) and the amount of Ca2+ stored within the cells (released with ionomycin) was increased compared with cells treated with NaF under normal Na+ conditions. The NaF-initiated increase in [Ca2+]b and depletion of Bk-releasable Ca2+ pool(s) in the low-Na+ condition was diminished by 25 mumol l-1 ryanodine, indicating the involvement of Ca(2+)-induced Ca2+ release (CICR). 5. In simultaneous recordings of [Ca2+]sp (with FFP-18) and [Ca2+]b (with Calcium Green-1), 1 nmol l-1 Bk or 10 mmol l-1 NaF yielded focal [Ca2+] elevation in the subplasmalemmal region with no increase in the perinuclear area. 6. Treatment with 10 mumol-1 nocodazole caused the SER to collapse and unmasked Ca2+ release in response to 1 nmol l-1 Bk and 10 mmol l-1 NaF, similar to low-Na+ conditions, while the effect of thapsigargin was not changed. 7. These data show that in endothelial cells, focal, subplasmalemmal Ca2+ elevations in response to small or slow IP3 formation occur due to vectorial Ca2+ release from the SER towards the plasmalemma followed by Ca2+ extrusion by Na(+)-Ca2+ exchange. While these local Ca2+ elevations are not detectable with Ca2+ dyes for the determination of [Ca2+]b, prevention of Ca2+ extrusion or SER disruption yields increases in [Ca2+]b partially due to CICR. 8. All of the data support our hypothesis that in weakly stimulated endothelial cells, intracellular Ca2+ release and [Ca2+] elevation are limited to the subplasmalemmal region. We propose that the SER co-operates with associated parts of the plasma membrane to control Ca2+ homeostasis, Ca2+ distribution and Ca2+ entry. The existence of such a subplasmalemmal Ca2+ control unit (SCCU) needs to be considered in discussions of Ca2+ signalling, especially when cytoplasmic Ca2+ dyes, such as fura-2 or Calcium Green-1, are used.
    [Abstract] [Full Text] [Related] [New Search]