These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin.
    Author: Ikeda S, Kishida S, Yamamoto H, Murai H, Koyama S, Kikuchi A.
    Journal: EMBO J; 1998 Mar 02; 17(5):1371-84. PubMed ID: 9482734.
    Abstract:
    Glycogen synthase kinase-3 (GSK-3) mediates epidermal growth factor, insulin and Wnt signals to various downstream events such as glycogen metabolism, gene expression, proliferation and differentiation. We have isolated here a GSK-3beta-interacting protein from a rat brain cDNA library using a yeast two-hybrid method. This protein consists of 832 amino acids and possesses Regulators of G protein Signaling (RGS) and dishevelled (Dsh) homologous domains in its N- and C-terminal regions, respectively. The predicted amino acid sequence of this GSK-3beta-interacting protein shows 94% identity with mouse Axin, which recently has been identified as a negative regulator of the Wnt signaling pathway; therefore, we termed this protein rAxin (rat Axin). rAxin interacted directly with, and was phosphorylated by, GSK-3beta. rAxin also interacted directly with the armadillo repeats of beta-catenin. The binding site of rAxin for GSK-3beta was distinct from the beta-catenin-binding site, and these three proteins formed a ternary complex. Furthermore, rAxin promoted GSK-3beta-dependent phosphorylation of beta-catenin. These results suggest that rAxin negatively regulates the Wnt signaling pathway by interacting with GSK-3beta and beta-catenin and mediating the signal from GSK-3beta to beta-catenin.
    [Abstract] [Full Text] [Related] [New Search]