These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Interaction of the protonated Schiff base with the peptide backbone of valine 49 and the intervening water molecule in the N photointermediate of bacteriorhodopsin.
    Author: Yamazaki Y, Kandori H, Needleman R, Lanyi JK, Maeda A.
    Journal: Biochemistry; 1998 Feb 10; 37(6):1559-64. PubMed ID: 9484226.
    Abstract:
    The effects of replacing Val49, Thr46, Asp96, and Phe219 in the cytoplasmic domain of bacteriorhodopsin on water O-H stretching vibrational bands and the amide I and imide II bands of the peptide backbone were examined in the M, N, and MN intermediates. This study is an extension of previous work on the L photointermediate [Yamazaki, Y., Tuzi, S., Saitô, H., Kandori, H., Needleman, R., Lanyi, J. K., and Maeda, A. (1996) Biochemistry 35, 4063-4068]. The O-H stretching bands at 3671 cm-1 in the M intermediate and at 3654 cm-1 in the N intermediate are shown to originate from the same water molecule. It is located in the region surrounded by the Schiff base, Val49, Thr46, and Phe219 in the M intermediate, and moves closer to Val49 in the M to N reaction. The peptide C-N bond between Val49 and Pro50 and the C=O bond of Val49 undergo perturbations upon formation of the N intermediate but not the M and N-like MN states in which the Schiff base is unprotonated. The carbonyl oxygen of Val49 is proposed to be the acceptor in H-bonding with the protonated Schiff base in the N intermediate. The results suggest that water molecules may be involved in this interaction in the cytoplasmic region, and may play a role in the accessibility change of the Schiff base in the L to M to N photocycle steps.
    [Abstract] [Full Text] [Related] [New Search]