These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Importance of intramembrane carboxylic acids for occlusion of K+ ions at equilibrium in renal Na,K-ATPase. Author: Nielsen JM, Pedersen PA, Karlish SJ, Jorgensen PL. Journal: Biochemistry; 1998 Feb 17; 37(7):1961-8. PubMed ID: 9485323. Abstract: Site-directed mutagenesis and assay of Rb+ and Tl+ occlusion in recombinant Na,K-ATPase from yeast were combined to establish structure-function relationships of amino acid side chains involved in high-affinity occlusion of K+ in the E2[2K] form. The wild-type yeast enzyme was capable of occluding 2 Rb+ or Tl+ ions/ouabain binding site or alpha 1 beta 1 unit with high apparent affinity (Kd(Tl+) = 7 +/- 2 microM), like the purified Na,K-ATPase from pig kidney. Mutations of Glu327(Gln,Asp), Asp804(Asn, Glu), Asp808(Asn, Glu) and Glu779(Asp) abolished high-affinity occlusion of Rb+ or Tl+ ions. The substitution of Glu779 for Gln reduced the occlusion capacity to 1 Tl+ ion/alpha 1 beta 1-unit with a 3-fold decrease of the apparent affinity for the ion (Kd(Tl+) = 24 +/- 8 microM). These effects on occlusion were closely correlated to effects of the mutations on K0.5(K+) for K+ displacement of ATP binding. Each of the four carboxylate residues Glu327, Glu779, and Asp804 or Asp808 in transmembrane segments 4, 5, and 6 is therefore essential for high-affinity occlusion of K+ in the E2[2K] form. These residues either may engage directly in cation coordination or they may be important for formation or stability of the occlusion cavity.[Abstract] [Full Text] [Related] [New Search]