These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Segmentation and numerical analysis of microcalcifications on mammograms using mathematical morphology. Author: Betal D, Roberts N, Whitehouse GH. Journal: Br J Radiol; 1997 Sep; 70(837):903-17. PubMed ID: 9486066. Abstract: The top-hat and watershed algorithms of mathematical morphology have been applied to detect automatically and segment microcalcifications on mammograms digitized to a pixel resolution of 40 microns using a CCD camera. The database comprised 38 cases from the breast assessment clinic in Liverpool. For all cases, both craniocaudal (CC) and lateral oblique (LO) views were available. 19 cases were proven to be benign and 19 malignant based on cytology and histology. Malignant clusters contained more microcalcifications (14 malignant, 10 benign), occupied a larger area (37 mm2, 9 mm2) and had longer cluster perimeters than benign clusters (33.2 mm, 15.5 mm). Malignant microcalcifications exhibited a wider variety of shapes and were more heterogeneous in terms of image signal intensity than benign microcalcifications. Further mathematical morphology algorithms were applied to describe microcalcification shape in terms of the presence or absence of infoldings, elongation, narrow irregularities and wide irregularities. The three largest microcalcifications were selected for each case and, using a "leave-one-out" approach, each microcalcification was classified in respect of its five nearest neighbours as either malignant or benign. The area under the curve of a receiver operating characteristic (ROC) analysis of the proportion of the three microcalcifications which agreed with the true diagnosis increased from 0.73 (CC) and 0.63 (LO) to 0.79 when both views were considered. Next, each cluster in turn was ranked according to its agreement with the database as a whole over 21 features. An ROC analysis was performed to investigate the effect on sensitivity and specificity of the proportion of the nine nearest neighbours that agreed with the true classification. The largest area under the ROC curve was 0.84 produced by the four features of proportion of irregular microcalcifications, proportion of round microcalcifications, number of microcalcifications in the cluster and the interquartile range of microcalcification area. The shape of microcalcifications is confirmed as being of overriding importance in classifying cases as either malignant or benign. This observation motivates a further study enhanced by using magnified views digitized to a higher resolution by a laser scanner. This will enable the reliable assessment of the shape of a greater number of microcalcifications in each cluster, which is likely to increase further the discriminating power of the image analysis routines and lead to the development of an expert system for automatic mammographic screening.[Abstract] [Full Text] [Related] [New Search]