These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Involvement of phospholipase D and protein kinase C in phorbol ester and fatty acid stimulated turnover of phosphatidylcholine and phosphatidylethanolamine in neural cells. Author: Cook HW, Ridgway ND, Byers DM. Journal: Biochim Biophys Acta; 1998 Feb 05; 1390(1):103-17. PubMed ID: 9487144. Abstract: Hydrolysis of phosphatidylcholine (PtdCho) can provide lipid second messengers involved in sustained signal transduction. Four neural-derived cell lines (C6 rat glioma; N1E-115 mouse and SK-N-MC and SK-N-SH human neuroblastoma) express different protein kinase C (PKC) isoforms and differentially respond to 4beta-12-O-tetradecanoylphorbol-13-acetate (beta-TPA)-stimulation of PtdCho synthesis. We examined involvement of PLD and PKC in the hydrolysis and resynthesis of PtdCho and phosphatidylethanolamine stimulated by beta-TPA, bryostatin (a non-phorbol PKC activator) and oleic acid (18:1n-9) in the four cell lines. beta-TPA or bryostatin produced similar enhancement of [3H]Cho incorporation, loss of stimulated synthesis after down regulation of PKC, and activation of PLD. In C6 cells, staurosporine (STS) and bis-indolylmaleimide (BIM) only partially inhibited basal and beta-TPA-stimulated PLD activity measured as choline or ethanolamine release; phosphatidylbutanol formation after prelabeling with [9,10-3H]18:1n-9, [9,10-3H]myristic acid (14:0), [1-14C]eicosapentaenoic acid (20:5n-3) or 1-O-[alkyl-1', 2-3H]-sn-glyceryl-3-phosphorylcholine gave similar results. STS at >200 nM activated PLD in the presence or absence of beta-TPA. In SK-N-SH cells where PtdCho synthesis was stimulated by beta-TPA or bryostatin, no effect of these agents on PLD was observed. 18:1n-9 stimulated PtdCho synthesis and, to a lesser extent, hydrolysis by PLD both with and without beta-TPA present. Fatty acids had no effect on PKC activities and down regulation of PKC with beta-TPA enhanced fatty acid stimulation of PtdCho synthesis. Thus, activation of PLD hydrolysis preceding resynthesis is involved in the stimulatory effects of beta-TPA on PtdCho synthesis in some but not all of these neural derived cells. Further, PLD hydrolysis of PtdCho and PtdEtn appear to have differing aspects of regulation. Fatty acid regulation of PtdCho synthesis occurs independent of PKC activation. Accordingly, regulation of membrane phospholipid degradation and resynthesis in association with lipid second messenger generation can involve a complex interplay of PLD, PKC, and fatty acids. (c) 1998 Elsevier Science B.V.[Abstract] [Full Text] [Related] [New Search]