These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Interaction of beta-lactam antibiotics with histidine residue of rat H+/peptide cotransporters, PEPT1 and PEPT2. Author: Terada T, Saito H, Inui K. Journal: J Biol Chem; 1998 Mar 06; 273(10):5582-5. PubMed ID: 9488685. Abstract: Peptide transporters mediate the H+-coupled uphill transport of oligopeptides and peptide-like drugs such as beta-lactam antibiotics in the intestinal and renal brush-border membranes. Two H+/peptide cotransporters, PEPT1 and PEPT2, have been cloned and functionally characterized. In this study, we examined the interaction of the dipeptides and beta-lactam antibiotics with the histidine residue of rat PEPT1 and PEPT2 transfected into the renal epithelial cell line LLC-PK1. Diethylpyrocarbonate (DEPC), which is a histidine residue modifier, abolished the glycylsarcosine uptake by both transfectants. The DEPC-induced inhibition of glycylsarcosine uptake via PEPT1 or PEPT2 was attenuated by an excess of dipeptide or aminocephalosporin. In contrast, anionic cephalosporins without an alpha-amino group and bestatin, which is an antineoplastic drug with a beta-amino group, did not attenuate the DEPC-induced inactivation of PEPT1 and PEPT2. The DEPC inactivation of PEPT1 was almost prevented by various charged dipeptides, which suggests that the inability of the drugs without an alpha-amino group to prevent the DEPC inactivation was not due to their ionic charge. These findings suggest that the alpha-amino group of beta-lactam antibiotics interacts with the histidine residue of PEPT1 and PEPT2 and may be involved in the mechanism of substrate recognition by the peptide transporters.[Abstract] [Full Text] [Related] [New Search]